Copied to
clipboard

G = C4xC22:C8order 128 = 27

Direct product of C4 and C22:C8

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C4xC22:C8, C42.457D4, C23.33C42, (C22xC4):6C8, C22:1(C4xC8), C4.155(C4xD4), (C2xC42).32C4, C23.30(C2xC8), (C2xC4).43C42, (C23xC4).27C4, C2.3(C4xM4(2)), C24.109(C2xC4), (C2xC4).90M4(2), (C22xC42).5C2, C22.27(C2xC42), C22.19(C22xC8), (C22xC8).469C22, (C23xC4).628C22, (C2xC42).987C22, C23.250(C22xC4), C22.36(C2xM4(2)), C2.2(C42.12C4), C4o3(C22.7C42), (C22xC4).1603C23, C22.7C42:42C2, C22.48(C42:C2), C42o2(C22.7C42), (C2xC4xC8):5C2, C2.6(C2xC4xC8), (C2xC8):27(C2xC4), (C2xC4).59(C2xC8), C2.2(C4xC22:C4), C2.2(C2xC22:C8), C42o(C2xC22:C8), (C2xC4).1493(C2xD4), (C2xC22:C8).48C2, (C2xC4).913(C4oD4), (C22xC4).433(C2xC4), (C2xC4).593(C22xC4), (C2xC4).395(C22:C4), C22.111(C2xC22:C4), (C2xC4)o2(C22.7C42), (C2xC4)o(C2xC22:C8), (C2xC42)o(C2xC22:C8), SmallGroup(128,480)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — C4xC22:C8
C1C2C4C2xC4C22xC4C2xC42C2xC4xC8 — C4xC22:C8
C1C2 — C4xC22:C8
C1C2xC42 — C4xC22:C8
C1C2C2C22xC4 — C4xC22:C8

Generators and relations for C4xC22:C8
 G = < a,b,c,d | a4=b2=c2=d8=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, cd=dc >

Subgroups: 316 in 218 conjugacy classes, 120 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C23, C23, C23, C42, C42, C2xC8, C2xC8, C22xC4, C22xC4, C22xC4, C24, C4xC8, C22:C8, C2xC42, C2xC42, C2xC42, C22xC8, C23xC4, C23xC4, C22.7C42, C2xC4xC8, C2xC22:C8, C22xC42, C4xC22:C8
Quotients: C1, C2, C4, C22, C8, C2xC4, D4, C23, C42, C22:C4, C2xC8, M4(2), C22xC4, C2xD4, C4oD4, C4xC8, C22:C8, C2xC42, C2xC22:C4, C42:C2, C4xD4, C22xC8, C2xM4(2), C4xC22:C4, C2xC4xC8, C4xM4(2), C2xC22:C8, C42.12C4, C4xC22:C8

Smallest permutation representation of C4xC22:C8
On 64 points
Generators in S64
(1 29 61 45)(2 30 62 46)(3 31 63 47)(4 32 64 48)(5 25 57 41)(6 26 58 42)(7 27 59 43)(8 28 60 44)(9 18 38 49)(10 19 39 50)(11 20 40 51)(12 21 33 52)(13 22 34 53)(14 23 35 54)(15 24 36 55)(16 17 37 56)
(2 21)(4 23)(6 17)(8 19)(10 44)(12 46)(14 48)(16 42)(26 37)(28 39)(30 33)(32 35)(50 60)(52 62)(54 64)(56 58)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 17)(7 18)(8 19)(9 43)(10 44)(11 45)(12 46)(13 47)(14 48)(15 41)(16 42)(25 36)(26 37)(27 38)(28 39)(29 40)(30 33)(31 34)(32 35)(49 59)(50 60)(51 61)(52 62)(53 63)(54 64)(55 57)(56 58)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)

G:=sub<Sym(64)| (1,29,61,45)(2,30,62,46)(3,31,63,47)(4,32,64,48)(5,25,57,41)(6,26,58,42)(7,27,59,43)(8,28,60,44)(9,18,38,49)(10,19,39,50)(11,20,40,51)(12,21,33,52)(13,22,34,53)(14,23,35,54)(15,24,36,55)(16,17,37,56), (2,21)(4,23)(6,17)(8,19)(10,44)(12,46)(14,48)(16,42)(26,37)(28,39)(30,33)(32,35)(50,60)(52,62)(54,64)(56,58), (1,20)(2,21)(3,22)(4,23)(5,24)(6,17)(7,18)(8,19)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,41)(16,42)(25,36)(26,37)(27,38)(28,39)(29,40)(30,33)(31,34)(32,35)(49,59)(50,60)(51,61)(52,62)(53,63)(54,64)(55,57)(56,58), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)>;

G:=Group( (1,29,61,45)(2,30,62,46)(3,31,63,47)(4,32,64,48)(5,25,57,41)(6,26,58,42)(7,27,59,43)(8,28,60,44)(9,18,38,49)(10,19,39,50)(11,20,40,51)(12,21,33,52)(13,22,34,53)(14,23,35,54)(15,24,36,55)(16,17,37,56), (2,21)(4,23)(6,17)(8,19)(10,44)(12,46)(14,48)(16,42)(26,37)(28,39)(30,33)(32,35)(50,60)(52,62)(54,64)(56,58), (1,20)(2,21)(3,22)(4,23)(5,24)(6,17)(7,18)(8,19)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,41)(16,42)(25,36)(26,37)(27,38)(28,39)(29,40)(30,33)(31,34)(32,35)(49,59)(50,60)(51,61)(52,62)(53,63)(54,64)(55,57)(56,58), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64) );

G=PermutationGroup([[(1,29,61,45),(2,30,62,46),(3,31,63,47),(4,32,64,48),(5,25,57,41),(6,26,58,42),(7,27,59,43),(8,28,60,44),(9,18,38,49),(10,19,39,50),(11,20,40,51),(12,21,33,52),(13,22,34,53),(14,23,35,54),(15,24,36,55),(16,17,37,56)], [(2,21),(4,23),(6,17),(8,19),(10,44),(12,46),(14,48),(16,42),(26,37),(28,39),(30,33),(32,35),(50,60),(52,62),(54,64),(56,58)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,17),(7,18),(8,19),(9,43),(10,44),(11,45),(12,46),(13,47),(14,48),(15,41),(16,42),(25,36),(26,37),(27,38),(28,39),(29,40),(30,33),(31,34),(32,35),(49,59),(50,60),(51,61),(52,62),(53,63),(54,64),(55,57),(56,58)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)]])

80 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4X4Y···4AJ8A···8AF
order12···222224···44···48···8
size11···122221···12···22···2

80 irreducible representations

dim111111111222
type++++++
imageC1C2C2C2C2C4C4C4C8D4M4(2)C4oD4
kernelC4xC22:C8C22.7C42C2xC4xC8C2xC22:C8C22xC42C22:C8C2xC42C23xC4C22xC4C42C2xC4C2xC4
# reps12221164432484

Matrix representation of C4xC22:C8 in GL4(F17) generated by

1000
01300
00130
00013
,
16000
01600
0010
00016
,
1000
0100
00160
00016
,
9000
0100
00013
00130
G:=sub<GL(4,GF(17))| [1,0,0,0,0,13,0,0,0,0,13,0,0,0,0,13],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[9,0,0,0,0,1,0,0,0,0,0,13,0,0,13,0] >;

C4xC22:C8 in GAP, Magma, Sage, TeX

C_4\times C_2^2\rtimes C_8
% in TeX

G:=Group("C4xC2^2:C8");
// GroupNames label

G:=SmallGroup(128,480);
// by ID

G=gap.SmallGroup(128,480);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,112,141,232,100,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^2=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<