Copied to
clipboard

G = C4×C22⋊C8order 128 = 27

Direct product of C4 and C22⋊C8

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C4×C22⋊C8, C42.457D4, C23.33C42, (C22×C4)⋊6C8, C221(C4×C8), C4.155(C4×D4), (C2×C42).32C4, C23.30(C2×C8), (C2×C4).43C42, (C23×C4).27C4, C2.3(C4×M4(2)), C24.109(C2×C4), (C2×C4).90M4(2), (C22×C42).5C2, C22.27(C2×C42), C22.19(C22×C8), (C22×C8).469C22, (C23×C4).628C22, (C2×C42).987C22, C23.250(C22×C4), C22.36(C2×M4(2)), C2.2(C42.12C4), C43(C22.7C42), (C22×C4).1603C23, C22.7C4242C2, C22.48(C42⋊C2), C422(C22.7C42), (C2×C4×C8)⋊5C2, C2.6(C2×C4×C8), (C2×C8)⋊27(C2×C4), (C2×C4).59(C2×C8), C2.2(C4×C22⋊C4), C2.2(C2×C22⋊C8), C42(C2×C22⋊C8), (C2×C4).1493(C2×D4), (C2×C22⋊C8).48C2, (C2×C4).913(C4○D4), (C22×C4).433(C2×C4), (C2×C4).593(C22×C4), (C2×C4).395(C22⋊C4), C22.111(C2×C22⋊C4), (C2×C4)2(C22.7C42), (C2×C4)(C2×C22⋊C8), (C2×C42)(C2×C22⋊C8), SmallGroup(128,480)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — C4×C22⋊C8
C1C2C4C2×C4C22×C4C2×C42C2×C4×C8 — C4×C22⋊C8
C1C2 — C4×C22⋊C8
C1C2×C42 — C4×C22⋊C8
C1C2C2C22×C4 — C4×C22⋊C8

Generators and relations for C4×C22⋊C8
 G = < a,b,c,d | a4=b2=c2=d8=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, cd=dc >

Subgroups: 316 in 218 conjugacy classes, 120 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C23, C23, C23, C42, C42, C2×C8, C2×C8, C22×C4, C22×C4, C22×C4, C24, C4×C8, C22⋊C8, C2×C42, C2×C42, C2×C42, C22×C8, C23×C4, C23×C4, C22.7C42, C2×C4×C8, C2×C22⋊C8, C22×C42, C4×C22⋊C8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C23, C42, C22⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C4○D4, C4×C8, C22⋊C8, C2×C42, C2×C22⋊C4, C42⋊C2, C4×D4, C22×C8, C2×M4(2), C4×C22⋊C4, C2×C4×C8, C4×M4(2), C2×C22⋊C8, C42.12C4, C4×C22⋊C8

Smallest permutation representation of C4×C22⋊C8
On 64 points
Generators in S64
(1 29 61 45)(2 30 62 46)(3 31 63 47)(4 32 64 48)(5 25 57 41)(6 26 58 42)(7 27 59 43)(8 28 60 44)(9 18 38 49)(10 19 39 50)(11 20 40 51)(12 21 33 52)(13 22 34 53)(14 23 35 54)(15 24 36 55)(16 17 37 56)
(2 21)(4 23)(6 17)(8 19)(10 44)(12 46)(14 48)(16 42)(26 37)(28 39)(30 33)(32 35)(50 60)(52 62)(54 64)(56 58)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 17)(7 18)(8 19)(9 43)(10 44)(11 45)(12 46)(13 47)(14 48)(15 41)(16 42)(25 36)(26 37)(27 38)(28 39)(29 40)(30 33)(31 34)(32 35)(49 59)(50 60)(51 61)(52 62)(53 63)(54 64)(55 57)(56 58)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)

G:=sub<Sym(64)| (1,29,61,45)(2,30,62,46)(3,31,63,47)(4,32,64,48)(5,25,57,41)(6,26,58,42)(7,27,59,43)(8,28,60,44)(9,18,38,49)(10,19,39,50)(11,20,40,51)(12,21,33,52)(13,22,34,53)(14,23,35,54)(15,24,36,55)(16,17,37,56), (2,21)(4,23)(6,17)(8,19)(10,44)(12,46)(14,48)(16,42)(26,37)(28,39)(30,33)(32,35)(50,60)(52,62)(54,64)(56,58), (1,20)(2,21)(3,22)(4,23)(5,24)(6,17)(7,18)(8,19)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,41)(16,42)(25,36)(26,37)(27,38)(28,39)(29,40)(30,33)(31,34)(32,35)(49,59)(50,60)(51,61)(52,62)(53,63)(54,64)(55,57)(56,58), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)>;

G:=Group( (1,29,61,45)(2,30,62,46)(3,31,63,47)(4,32,64,48)(5,25,57,41)(6,26,58,42)(7,27,59,43)(8,28,60,44)(9,18,38,49)(10,19,39,50)(11,20,40,51)(12,21,33,52)(13,22,34,53)(14,23,35,54)(15,24,36,55)(16,17,37,56), (2,21)(4,23)(6,17)(8,19)(10,44)(12,46)(14,48)(16,42)(26,37)(28,39)(30,33)(32,35)(50,60)(52,62)(54,64)(56,58), (1,20)(2,21)(3,22)(4,23)(5,24)(6,17)(7,18)(8,19)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,41)(16,42)(25,36)(26,37)(27,38)(28,39)(29,40)(30,33)(31,34)(32,35)(49,59)(50,60)(51,61)(52,62)(53,63)(54,64)(55,57)(56,58), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64) );

G=PermutationGroup([[(1,29,61,45),(2,30,62,46),(3,31,63,47),(4,32,64,48),(5,25,57,41),(6,26,58,42),(7,27,59,43),(8,28,60,44),(9,18,38,49),(10,19,39,50),(11,20,40,51),(12,21,33,52),(13,22,34,53),(14,23,35,54),(15,24,36,55),(16,17,37,56)], [(2,21),(4,23),(6,17),(8,19),(10,44),(12,46),(14,48),(16,42),(26,37),(28,39),(30,33),(32,35),(50,60),(52,62),(54,64),(56,58)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,17),(7,18),(8,19),(9,43),(10,44),(11,45),(12,46),(13,47),(14,48),(15,41),(16,42),(25,36),(26,37),(27,38),(28,39),(29,40),(30,33),(31,34),(32,35),(49,59),(50,60),(51,61),(52,62),(53,63),(54,64),(55,57),(56,58)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)]])

80 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4X4Y···4AJ8A···8AF
order12···222224···44···48···8
size11···122221···12···22···2

80 irreducible representations

dim111111111222
type++++++
imageC1C2C2C2C2C4C4C4C8D4M4(2)C4○D4
kernelC4×C22⋊C8C22.7C42C2×C4×C8C2×C22⋊C8C22×C42C22⋊C8C2×C42C23×C4C22×C4C42C2×C4C2×C4
# reps12221164432484

Matrix representation of C4×C22⋊C8 in GL4(𝔽17) generated by

1000
01300
00130
00013
,
16000
01600
0010
00016
,
1000
0100
00160
00016
,
9000
0100
00013
00130
G:=sub<GL(4,GF(17))| [1,0,0,0,0,13,0,0,0,0,13,0,0,0,0,13],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[9,0,0,0,0,1,0,0,0,0,0,13,0,0,13,0] >;

C4×C22⋊C8 in GAP, Magma, Sage, TeX

C_4\times C_2^2\rtimes C_8
% in TeX

G:=Group("C4xC2^2:C8");
// GroupNames label

G:=SmallGroup(128,480);
// by ID

G=gap.SmallGroup(128,480);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,112,141,232,100,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^2=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations

׿
×
𝔽